Learning Quadratic Forms by Density Estimation and its Applications to Image Coding
نویسندگان
چکیده
We develop a novel method for source separation and apply it to natural images. It is a specialization of independent factor analysis (IFA) but overcomes generic IFA problems and finds many independent sources in few observations. A fast and robust EM learning algorithm produces an over-complete basis. Compared to standard approaches our method generates superior codes in terms of population sparseness and dispersity. The algorithm learns features which possess properties that are observed in simple as well as complex cells found in V1.
منابع مشابه
Enhancement of Learning Based Image Matting Method with Different Background/Foreground Weights
The problem of accurate foreground estimation in images is called Image Matting. In image matting methods, a map is used as learning data, which is produced by those pixels that are definitely foreground, definitely background ,and unknown. This three-level pixel map is often referred to as a trimap, which is produced manually in alpha matte datasets. The true class of unknown pixels will be es...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملA Limit Theorem for Quadratic Forms and Its Applications
We consider quadratic forms of martingale differences and establish a central limit theorem under mild and easily verifiable conditions+ By approximating Fourier transforms of stationary processes by martingales, our central limit theorem is applied to the smoothed periodogram estimate of spectral density functions+ Our results go beyond earlier ones by allowing a variety of nonlinear time seri...
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کامل